Home Politics Religion Media Biz Society Tech Travel Books Intl. Autos Automobiles
                        Aviation   Pharma   About Us   Feedback   Links

NIH announces grants for faster, cheaper DNA sequencing



10 August, 2005: The National Human Genome Research Institute (NHGRI),part of the National Institutes of Health (NIH), has awarded grants totaling more than $32 million for the development of innovative sequencing technologies intended to reduce the cost of DNA sequencing and expand the use of genomics in biomedical research and healthcare, an official release informs.

The efforts are aimed at speeding the rate at which the next generation of sequencing technologies become available in the scientific lab and the medical clinic. Not only will these technologies substantially reduce the cost of sequencing a genome, but they will provide a quantum leap in the scope and scale of research aimed at uncovering the genomic contributions to common diseases, such as cancer, heart disease and diabetes, the release notes.

Over the past decade, DNA sequencing costs have fallen more than 50-fold, fueled in large part by tools, technologies and process improvements developed as part of the successful effort to sequence the human genome.

However, it still costs about $10 million to sequence 3 billion base pairs -- the amount of DNA found in the genomes of humans and other mammals.

NHGRI's near-term goal is to lower the cost of sequencing a mammalian-sized genome to $100,000, which would enable researchers to sequence the genomes of hundreds or even thousands of people as part of studies to identify genes that contribute to common, complex diseases. Ultimately, NHGRI's vision is to cut the cost of whole-genome sequencing to $1,000 or less, which would enable the sequencing of individual genomes as part of routine medical care.

The ability to sequence an individual genome cost-effectively could enable health care professionals to tailor diagnosis, treatment and prevention to each person's unique genetic profile.

The new grants balance NHGRI's sequencing research portfolio by supporting more investigators working on technologies that would make it feasible to sequence a genome for $1,000. The majority of researchers who received NHGRI's initial sequencing technology grants, issued in October 2004, are aimed at sequencing a genome for $100,000. Both approaches have many complementary elements that integrate biochemistry, chemistry and physics with engineering to enhance the whole effort to develop the next generation of DNA sequencing and analysis technologies.

$1,000 Genome Grants

NHGRI's "Revolutionary Genome Sequencing Technologies" grants have as their goal the development of breakthrough technologies that will enable a human-sized genome to be sequenced for $1,000 or less. Grant recipients and their approximate total funding are:

1) Richard B Fair, PH.D., Duke University, Durham, N.C.

$510,000 (2 years)

"Droplet-Based Digital Microfluidic Genome Sequencing"

The near-term goal of this group is to demonstrate how existing

droplet-based microfluidic electro-wetting technology can be modified to perform sequencing by synthesis reaction chemistry. This method allows for smaller volumes of materials to be used as well as the decoupling of synthesis and detection steps, resulting in more efficient automation.

2) M. Reza Ghadiri, Ph.D., The Scripps Research Institute, La Jolla, Calif. And Hagan P. Bayley, Ph.D., Oxford University, UK.

$4.2 million (5 years)

"Single-Molecule DNA Sequencing with Engineered Nanopores"

This project is a collaborative effort between two laboratories that have experience in nanopore research, protein engineering and molecular

recognition. The group will engineer a device with the ability to recognize a nucleotide on the basis of changes in electrical current, as it passes through a membrane with tiny channels known as nanopores.

3) Jene A. Golovchencko, Ph.D., Harvard University, Cambridge, Mass.

$5.2 million (3 years)"Electronic Sequencing in Nanopores"

The objective of this project is to develop a general utility instrument to provide inexpensive sequencing that can also be used for projects to recognize genome variation. The group will design novel nanopores articulated with probes to sequentially, and directly, identify nucleotides in very long fragments of genomic DNA based on their unique electronic signals.

4) Susan H. Hardin, Ph.D., Visigen Biotechnologies, Houston.

$4.2 million (3 years) "Real-Time DNA Sequencing"

This group is developing a sequencing system in which polymerase (an enzyme used to synthesize DNA molecules) and nucleotides act together as direct molecular sensors of DNA base identity. The key to the system is the interaction between a fluorescent polymerase and the nucleotide, which emits a signature detectable in real-time.

5) Xiaohua Huang, Ph.D., University Of California, San Diego, La Jolla.

$750,000 (3 years) "Massively Parallel Cloning and Sequencing of DNA"

The goal of this project is to develop two innovative technologies:

massively parallel, whole-genome amplification and DNA sequencing by

denaturation. The resulting system amplifies DNA directly on a microchip,enabling the process of sequencing to be done on a single miniaturized device.

6) Jingyue Ju, Ph.D., Columbia University, New York.

$970,000 (3 years)"Modulating Nucleotide Size in DNA for Detection by Nanopore"

This group will design and synthesize modified nucleotides of different

sizes, which can be incorporated into DNA. When passed through nanopores,the differences between these modified nucleotides will be easier to detect,producing clean sequencing data.

7) Bhubaneswar (Bud) Mishra, Ph.D., New York University, New York.

$585,000 (2 years)"Haplotype Sequencing Via Single Molecule Hybridization"

Investigators from this group will hybridize short DNA probes to genomic DNA fragments to determine sequence information. In addition, they will use optical mapping to create restriction maps to help assemble the genome once it is sequenced. The group will then demonstrate how to combine the sequence and maps into distinct haplotype sequences.

8) Gregory L. Timp, Ph.D., University Of Illinois, Urbana-Champaign.

$2.1 million (3 years)"Sequencing a DNA Molecule Using a Synthetic Nanopore"

This group will explore the feasibility of sequencing a DNA molecule using a type of silicon integrated circuit. The circuit incorporates a nanopore mechanism with a molecular trap that forces the DNA molecule to oscillate back and forth between electrodes, measuring the electrical signal associated with each specific base.

9) Stephen W. Turner, Ph.D., Nanofluidics, Menlo Park, Calif.

$6.6 million (3 years)"Real-Time Multiplex Single-Molecule DNA Sequencing"

This group will leverage their "zero-mode waveguide" technology to detect single nucleotides in real-time, as they are incorporated by a DNA polymerase into a growing DNA molecule. The ultimate goal is to create a real-time, multiplex single-molecule DNA sequencing system that produces sequence reads containing hundreds of thousands of nucleotides.

$100,000 Genome Grants

NHGRI's "Near-Term Development for Genome Sequencing" grants will support research aimed at sequencing a human-sized genome at 100 times lower cost than is possible today. There is strong potential that, five years from now, some of these technologies will be at or near commercial availability. Grant recipients and their approximate total funding are:

1) Gina L. Costa, Ph.D., Agencourt Personal Genomics, Beverly, Mass.

$1.2 million (2 years)"Bead-Based Polony Sequencing"

Supplemental funding is expected to accelerate commercialization of this technology that will use oligonucleotide ligation to read DNA sequence,using bead-based, polymerase colony (polony) sequencing technology.

2) Vera B. Gorfinkel, Ph.D., The State University Of New York (Suny),

Stony Brook, N.Y.$1.5 million (2 years) "Ultra High Throughput DNA Sequencing System Based on Two-Dimensional Monolith Multi-Capillary Arrays and Nanoliter Reaction Volume"

This group will develop and implement an efficient method capable of

sequencing mammalian size genomes by amplifying single template molecules, and subjecting the product to Sanger sequencing and a highly parallel, capillary electrophoresis separation system.

3) Kellogg, Ph.D., Network Biosystems, Woburn, Mass.

$4.5 million (3 years) "$100,000 Genome Using Integrated Microfluidic Capillary Electrophoresis"

This group will work to improve performance of Sanger sequencing and PCR as compared to that attainable using capillary electrophoresis systems. To do so, it will miniaturize and integrate current sequencing technologies,building on its microfluidics platform.

More details about the NHGRI sequencing technology development grants,

Can be obtained from: http://www.genome.gov/15015202, the release states.


Pharma News Headlines

Cancer News

Cardiac News


Pharma industry news


Heart disease deaths more among New Yorkers

Pfizer to offer drugs risk/benefit summary to consumers 

Merck lied to public on Vioxx: lawyer tells jurors

Novartis acquires rights of kidney dialysis drug from SeBo

J&J's Concerta approved treatment of ADHD in teenagers in Canada

US FDA stalls Roche’ Accutane use in pregnancy

Novo Nordisk, Eli Lilly remove insulin products from Australia

British drug supply chain safety questioned after another fake Lipitor find

Wyeth starts support programme for Effexor patients

P&G’s Actonel with Calcium approved for osteoporosis

Pozen gets patent on pain management product

Genmab studies new drug for rheumatoid arthritis

Painkillers may increase blood pressure: study

Nektar buys out Aerogen for $32 m

Predix records positive data on anxiety drug

Insmed files against Increlex approval

Hepatitis A vaccine for kids approved in US

Psoriasis drug data positive: Cytochroma

Novo Nordisk’s 24-hour acting insulin Levemir gets US FDA okay

US FDA approves Teva's generic for osteoporosis 

Pfizer files NDA for Sutent in US

BioVeris licenses Baxter's vaccine portfolio

TheraQuest receives 2nd Orphan Drug status for neuralgia drug

Real-time glucose monitoring device approved in US

Halozyme gets FDA nod for bladder cancer therapy

Migenix to commence phase 2b studies in hep C therapy

Barr gets US FDA okay for clonazepam tabs

Anorexia drug study results positive: Par

GlaxoSmithKline begins phase III trials of new HIV drug

Ranbaxy's 7 anti retrovirals included in WHO list

FDA tightens restrictions on acne drug

Voglibose tabs launched in Japan

Remicade researcher gifts $ 105m to NYU

Par loses ondansetron case to GSK

Mistral starts clinical studies for generic

Carl Icahn sells Mylan shares

Florida sues Mylan, Teva and Watson

Dey and Connecticut settle pricing dispute

Germany set to stop rabies crossing borders

Office to review DTC drug advertisements in US

British docs to be trained in communication, safety

FDA okays acrylic lens for cataract patients 

Corautus to go ahead with angina drug studies 

Americans turn the low-fat way

Chemicals in plastics pose danger

US committee probes doctors’ complicity with Wall Street analysts

Meda buys out rival Viatris

US FDA nod for new levofloxacin regimen to treat acute bacterial sinusitis

Pozen files for new migraine treatment

New therapy for pancreatic cancer under review

New device inducing blood flow to heart granted US patent

NIH announces grants for faster, cheaper DNA sequencing

DOV starts phase III trial of pain drug in US

Alcohol linked cancers: Acetaldehyde in spot light

Hypertension `just above normal’ too risky

Gene causes infertility drugs go awry: study

China’s pig flu outbreak

Cardiac Science-Defibtech lawsuit settled

Peregrine starts Phase-1 anti-viral trial of Tarvacin

Dr. Reddy's launches immune booster for children

Lupin in pact with Kyowa of Japan

Bird flu vaccine may work in humans: US researchers



Home Politics Religion Media Biz Society Tech Travel Books Intl. Autos Automobiles
                        Aviation   Pharma   About Us   Feedback   Links

Latest updates    Contact Us - Feedback    About Us